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ETHANOL DETECTION STRATEGY WITH MULTIPLE 
DIGITAL FILTERING OF PASSIVE FT-IRINTERFEROGRAMS 

1.        INTRODUCTION 

The monitoring of industrial stack effluents is important in the areas of implementing 
environmental regulations, detecting hazardous chemical releases, and maintaining quality 
control of industrial processes. Remote monitoring techniques apply to these areas because of 
the ability to monitor various scenes with a single sensor and the advantage of not needing to 
place the sensor in a harsh or hazardous environment. Desirable characteristics for a remote 
monitor include portability, ruggedness, fast data acquisition, automated operation, and the 
availability of real-time monitoring results. 

Open-air Fourier transform infrared (FT-IR) spectrometry is being investigated as a 
potential analytical solution in the remote monitoring scenarios described above because it 
exhibits many of the properties of an ideal remote sensing technique. "   Significant effort has 
been devoted to decreasing the size and weight of FT-IR instrumentation, as well as increasing 
its ruggedness, through improvements in sensor design. Corresponding improvements in 
computer and detector technology have increased the analytical sensor performance and have 
made automated real-time detection feasible. 

The FT-IR remote sensing measurements have been implemented in either an active or 
passive mode. In the active mode, a controlled, high temperature infrared (IR) source is used to 
probe the atmosphere between either the source and spectrometer or between an external 
retroreflector and the source/spectrometer package. The passive experiment relies on an IR 
radiance differential between background and target vapor. The IR emission arises for elevated 
temperature gases relative to a colder background scene (i.e., source) radiances. On the other 
hand, IR absorption occurs for an atmospheric species relative to an elevated temperature 
background scene. The passive mode has the advantage of greater simplicity and flexibility in 
utility, but it often suffers the disadvantage of increased variability in the acquired data due to the 
dependence upon the uncontrolled background scene radiances. 

Work in our laboratories has focused on demonstrating the viability of passive FT-IR 
remote sensing measurements through the development of data analysis algorithms. These 
algorithms allow compensation for the data variance associated with radical changes in the 
background radiance. "9 The strategy of the algorithms is applying digital filter techniques to 
specific segments of the raw interferogram data collected by the passive FT-IR spectrometer. 
This analysis approach takes advantage of the fact that the background radiance is primarily 
represented as a broad spectral feature. This broad background spectral feature is constrained to 
the region around the interferogram centerburst and near the point of zero path difference (ZPD). 
Spectral bands of target species such as volatile organic compounds are much narrower. These 
narrower spectral features correspond to a representation that is spread over a much large optical 
retardation in the interferogram. This distribution of the narrow spectral features has been 
demonstrated by passive remote detection of target compounds with short interferogram 



segments of 120 points or less that are adequately displaced from the interfergram ZPD.10 

Restriction of the data acquisition to a short interferogram segment decreases data acquisition 
time and points to potentially more rugged interferometer designs." A fast data acquisition time 
for a remote sensor permits a snapshot of the vapor analyte that is only present within the sensor 
field-of-view (FOV) in open-air monitoring applications. Fast data acquisition also addresses the 
rapid change in sensor FOV when mounted on a mobile vehicle. 

The data processing steps begin with the application of digital filters to the interferogram 
segment to furnish spectral selectivity to the interferogram analysis. Proper digital filter design 
accepts only the modulated interferogram frequencies that are associated with an absorption or 
emission band of a target vapor analyte. The filtered interferogram segment is converted into a 
characteristic pattern for the detection of target vapor. Input of the filtered interferogram 
segment into a numerical pattern recognition algorithm allows the development of an automated 
procedure for detecting the target vapor analyte. 

Previous work employed a single filter, depending solely upon the filter attenuation 
characteristics to reject the spectral information arising from compounds other than the analyte 
potentially present in the sensor FOV.6"10 This approach proved workable, but it was limited in 
cases for which the vapor analyte information was overwhelmed by a large interference signal. 
This situation arose, for example, when it was necessary to monitor a minor analyte vapor 
component in a stack emission that was dominated by a species possessing some spectral overlap 
with the target vapor analyte. 

In this study, a multiple filtering strategy was evaluated for its potential to enhance the 
selectivity for this type of direct interferogram analysis. Passive FT-IR laboratory and field 
interferogram data of a mixture of vapors with overlapping spectra were used to test the 
selectivity of multiple digital filtering. Two protocols were implemented based on the use of 
(1) a single filter positioned on an analyte band and (2) two filters positioned on one analyte and 
one interference band. The filtered interferogram segments were subjected to a piecewise linear 
discriminant analysis for implementing an automated procedure in determination of the target 
analyte presence with remote sensing measurements. The target vapor analyte in this study was 
ethanol and the principal interference vapor was ammonia. 

2. EXPERIMENTAL PROCEDURE 

This study employed two data sets, one collected in the laboratory (data set A) and the 
second collected in the open air (data set B). Data set A was collected with a Midac Outfielder 
FT-IR emission spectrometer (Unit 120, Midac Corp., Irvine, CA). The instrument used a liquid 
nitrogen cooled Hg:Cd:Te detector which was designed to respond over the spectral range of 800 
to 1400 cm"1. The data acquisition was performed with a Dell 486P/50 computer (Dell 
Computer, Austin, TX) and the MIDCOL software package.12 The maximum spectral frequency 
was 1974.75 cm"1, with the interferogram data points sampled at every eighth zero crossing of 
the HeNe reference laser. The interferograms contained 1024 data points, and the point spacing 
in the corresponding single-beam spectra was nominally 4 cm"1. All interferograms were single 
scans (i.e., no signal averaging). 



The spectrometer was configured to view the IR radiation from a 4 by 4-in. extended 
blackbody (Model SR-80, CI Systems, Agoura, CA). This source was varied over the range of 5 
to 50 °C with an accuracy of ±0.03 °C and precision of ±0.01 °C. A gas cell with 
8.2 cm pathlength and low-density polyethylene windows (0.0005-in. thickness) was placed 
between the source and spectrometer such that the the spectrometer had a unobstructed FOV 
through the cell. This simulated field data collection experiments in which a target vapor is 
viewed against a variable background IR radiance. The cell temperature was uncontrolled, but 
was monitored with a thermistor. Across the data collection experiments, measured cell 
temperatures ranged from 22 to 26 °C. When the cell temperature was higher than the blackbody 
background, spectral signals of the target vapor components of the samples were observed as 
emission bands. Absorption bands were observed for the corresponding cases in which the gas 
cell temperature was lower than that of the background. 

For a given sample concentration, the blackbody temperature was initially set to 50 °C 
and interferograms were collected with no cell in the optical path, with the empty cell in place, 
and with the vapor filled cell in the FOV. Fifty interferograms were collected for each of these 
three conditions. This procedure was repeated at each step as the blackbody temperature was 
lowered to 45,40, 35, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 15, 10, and 5 °C. The data 
collection was then completed by raising the temperature to two final settings, which was varied 
somewhat over the 12 data runs. In eight cases, the final temperatures were 25.5 and 50 °C. The 
other combinations were 18/32,18/31, 24.5/25.5, and 18/50 °C. The data runs were performed 
in two blocks. Eight runs over 22 days were performed in the first block, and four runs over four 
days comprised the second block. The blocks were separated by 167 days. These time spans 
resulted as expected in some instrument drift that is reflected in the collected data. 

The target vapors were generated by vapor liquid equilibration of various aqueous 
solution concentrations (i.e., dilutions) of absolute ethanol (AAPER Alcohol and Chemical Co., 
Shelbyville, KY), acetone (Aldrich Chemical Co., Madison, WI, 99.5+%), ammonium hydroxide 
(Aldrich, ACS Reagent Grade) and mixtures of acetone/ethanol, ethanol/ammonium hydroxide, 
and acetone/ammonium hydroxide. The ternary aqueous mixtures were used to simulate 
conditions in which the analyte (i.e, solute), ethanol, must be detected in the presence of an 
interfering vapor constituent (e.g., acetone or ammonia). Twelve data runs were made consisting 
of nine different dilution factors and three duplicate runs. Table 1 describes the data runs 
performed. 

Estimated solution concentrations depended upon the tabulated densities to compute mole 
fractions.  '    The Wilson and Antoine equations were subsequently employed to compute 
activity coefficients and pure substance vapor pressures, respectively.15'    These combined 
values permitted estimation of the target vapor partial pressure above the aqueous solutions. 
These solute vapor partial pressures and cell pathlength allowed the computation of the path 
averaged concentrations for the particular sample components. Units of parts per million-meter 
(ppm-m) were used for comparison with field remote sensing experiments in which the sample 
resided in an open-air environment over an uncontrolled pathlength. As presented in Table 1, the 
estimated concentration ranges for ethanol, ammonia, and acetone were 150-700, 100-450, and 
950-3700 ppm-m, respectively. 



Table 1. Estimated CLs for Laboratory Aqueous Solutions of Data Set A 

Run Sample composition 
(dilution factors) 

Cell temp. 
(°C) 

[Ammonia]3 

(ppm-m) 
[Ethanol]3 

(ppm-m) 
[Acetone]2 

(ppm-m) 

1 1/32 ethanol 24.7-25.0 341 - 347 

2 1/64 ammonia 23.9-24.9 101-104 

3 1/64 acetone 24.8-25.7 963- 1001 

4 1/16 acetone + 1/16 ethanol 24.2-25.2 626 - 664 3446 - 3598 

5 1/32 ammonia +1/16 ethanolb 24.9-26.1 218-226 652 - 699 

6 1/32 ammonia + 1/16 ethanolb 25.3 - 26.2 220 - 227 667 - 703 

7 1/16 ammonia + 1/64 ethanolb 22.2 - 22.4 439 - 442 152-153 

8 1/16 ammonia + 1/64 ethanol 23.3-23.8 455 - 462 161-166 

9 1/16 ammonia + l/16ethanolb 22.1 -22.3 438-455 553 - 594 

10 1/16 ammonia +1/16 ethanolb 22.6-22.9 445 - 449 570-580 

11 1/32 ammonia + 1/16 acetone 25.1 -25.6 219-222 3583-3660 

12 1/64 ammonia +1/16 acetone 25.2-25.7 105-106 3598-3676 

Estimated path-averaged concentration based on computed vapor pressures. Range denotes 
minimum and maximum concentrations computed from the minimum and maximum cell 
temperatures measured across the data collection. 

Conditions run in duplicate. 
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Data set B was collected with a Brunswick FT-IR emission spectrometer (Unit 21, 
Brunswick Technical Group, DeLand, FL), which incorporated a Hg:Cd:Te detector with a 
Magnovox closed-cycle Stirling cooler. The FOV of the instrument was controlled with an 
antireflection-coated germanium refractive optic telescope (Intellitec, DeLand, FL), which 
restricted the sensor FOV to 0.5°. The MIDAS software package was used in the data 
acquisition.17 The interferogram sampling parameters described previously for the data collected 
with the Midac instrument were again used. Single-scan interferograms were collected as 
described previously. 

For this data set, analyte plumes were generated from a stack 4.5 m in height and with a 
exit diameter of 0.4 m (Aerosurvey, Inc., Manhattan, KS). Details of the plume generation were 
presented previously,1 and only information important to the current work is considered. The 
stack output temperatures ranged from approximately 125 to 300 °C. The data used in this study 
were compiled from two 4-day field experiments separated by 131 days (August 1997 and 
December 1997). In both open-air experiments, the spectrometer monitored the stack from 
ground level. The distance from the spectrometer to the stack was approximately 50 m for the 
first open-air experiment and 200 m for the second open-air experiment. The stack emission was 
viewed against a low angle sky spectral background. Spectral features of the released target 
vapors were observed exclusively as emission bands, due to the infrared radiance differential 
between elevated temperature vapor plume and low temperature sky background. 

Pure ethanol (AAPER Alcohol and Chemical Co.) and anhydrous ammonia (99.99%, 
Matheson Gas Products, Joliet, IL) and mixtures of ethanol/ammonia were released from the 
plume vapor generator. In addition, several releases of pure sulfur hexafluoride (99.8%, 
Matheson Gas Products) and methanol (AAPER Alcohol and Chemical Co.) were performed. 
The methodology for estimating analyte concentrations relied on the use of flow tubes, which 
were calibrated gravimetrically for each chemical species released. Linear calibrations of the 
five flow tubes used were based on one to four mass flux measurements for each vapor analyte. 
This allowed the emission rate of each compound to be estimated for a given flow tube setting. 
By assuming the released compounds were completely vaporized and behaved as ideal gases, 
emission rates were converted to volume flow rates by use of the ideal gas law. Concentrations 
were then estimated by dividing the volume flow rates of the released compounds by the overall 
volumetric air flow rate of the stack. Air flow rates were computed from the differential 
pressures measured across the two ports of a Pitot tube placed in the center of the stack. Path- 
averaged concentrations in ppm-m were computed by estimating the optical path length of the 
measurement as 0.4 m, the diameter of the stack. 

In addition to data collected during the stack vapor generated plumes, separate spectral 
measurements were made each day of various sky, terrain, and horizon backgrounds. 
Backgrounds also included the spectral measurements directly above the elevated temperature 
stack when no vapors were being released. A 12 by 12-in. extended blackbody source (Model 
140; Graseby Infrared Systems, Orlando, FL) was also positioned to fill the FOV of the 
spectrometer periodically allowing collection of reference blackbody spectral data at known 
temperatures. 

These experiments produced 38 data runs corresponding to 14 ethanol releases and 24 
runs in which another interference vapor was released or background interferograms were 
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collected. Six of the runs included mixtures releases of ethanol and ammonia. Estimated 
concentration ranges for the pure vapor components and ethanol/ammonia mixture releases 
ranged from 0-4800 and 0-1500 ppm-m, respectively. Tables 2 and 3 summarize the open-air 
spectral data collected. 

The collected interferograms comprising laboratory and open-air experimental data sets 
were transferred to Silicon Graphics Indigo-2 IMPACT 10000 workstations (Silicon Graphics, 
Mountain View, CA) operating under Irix (version 6.2). All computations were performed on 
these workstations using original software written in FORTRAN 77. Some computations used 
subroutines from the IMSL library (IMSL, Houston, TX). 

3.        RESULTS AND DISCUSSION 

3.1       Characterization of Spectral Data. 

Vapor-phase library spectra with a nominal point spacing of 2 cm"1 are presented in 
Figure 1 for pure (A) ethanol, (B) ammonia, and (C) acetone. These spectra are taken from the 
Nicolet-Aldrich vapor phase library. The ethanol C-0 stretching band is selected as the target 
band for the automated detection algorithm devised in this study. The center of mass of this 
band is 1058 cm"1, and the peak maximum coincides with the location of the Q branch at 
approximately 1066 cm"1. Comparison of the spectra of the three compounds reveals that the 
principal spectral interference for the targeted ethanol band arises from the rotational fine 
structure spectra of ammonia. These are the antisymmetric and symmetric H-N-H deformation 
bands of ammonia with centers of mass at 964 and 929 cm" , respectively. 

The effect of spectral overlap is clearly visible in Figure 2. Absorbance spectra of 
mixture samples are plotted in Figure 2 that are computed from interferograms in Data set A. 
The background blackbody temperature is 50 °C in each case. The interferograms are Fourier 
transformed into single-beam spectra with triangular apodization, Mertz phase correction, and 
one level of zero-filling. A 128-point symmetric interferogram is used in calculating the phase 
spectrum. The nominal spectral point spacing is 2 cm"1, the same as in Figure 1. The 
transmittance values are obtained by ratioing the passive single-beam spectrum of the target 
vapor in the gas cell to a similarly processed passive single-beam spectrum of the empty blank 
cell. These transmittance values are converted to absorbance units and are displayed in Figure 2. 
In calculating these passive absorbance values, no correction is made for the self-emission of the 
optical system.19 

The ethanol C-0 band in Figure 2A is seen to be relatively free of overlap from the 
acetone C-CO-C backbone stretching band with center of mass at 1214 cm"1. The spectral 
overlap of the targeted ethanol band with the rotational structure of the ammonia bands is 
illustrated by Figures 2B and 2C. As the ammonia concentration is increased relative to that of 
ethanol (Figure 2C), the ethanol absorption is increasingly obscured by the ammonia spectral 
features. This simulates a monitoring scenario in which ethanol is to be detected as a minor 
component of a stack effluent. This study evaluates the degree that digital filtering and pattern 
recognition strategies isolate the ethanol information from the various background signatures. 

12 



Table 2. Experimental Conditions of Data Set B for Ethanol-Active Data 

Run Expt.a Day Stack 
Temp. 

(°Q 

Chemical Composition Training Pred. 
I 

1 1 198-204 229-1629 ppm-m ethanol 2136 12418 

2 1 171-178 1555-1587 ppm-m ethanol 689 4751 

3 3 249-251 643-644 ppm-m ethanol 609 2300 

4 3 198-201 628-653 ppm-m ethanol 428 2572 

5 3 173-176 644-677 ppm-m ethanol 148 2852 

6 3 118-129 1400-1518 ppm-m ethanol 116 2075 

7 4 196-203 52-522 ppm-m ethanol/163-176 
ppm-m ammonia mixtures 

49 2023 

8 4 173-177 405-496 ppm-m ethanol/175-181 
ppm-m ammonia mixtures 

61 2139 

9b 4 171-178 0-405 ppm-m ethanol/170-183 ppm- 
m ammonia mixtures 

0 0 

10 4 196-200 Variable ethanol and ammonia 
mixtures 

11 126 

11 4 192-201 2325-2481 ppm-m ethanol/7-69 
ppm-m ammonia mixtures 

276 6124 

12 4 174-177 2345-4808 ppm-m ethanol/10-63 
ppm-m ammonia mixtures 

477 4522 

13 2 2 189-208 739-3125 ppm-m ethanol 872 4619 

14 2 2 173-177 2061-2571 ppm-m ethanol 2128 3381 

indicates the first or second open-air experiment. 

Run 9 was withheld to form Prediction Set II. 



Table 3. Experimental Conditions of Data Set B for Ethanol-Inactive Data 

Run Expt.a Day Stack 
Temp. 

(8C) 

Chemical Composition Training Pred. 
I 

15 - Blackbody and sky backgrounds 
including sky above heated stack 

266 7256 

16 214 29 ppm-m sulfur hexafluoride 5 1206 

17 202-206 97-402 ppm-m methanol 270 7802 

18 174-175 383-402 ppm-m methanol 220 4757 

19 - Blackbody (37-80 EC) 39 1813 

20 2 196-206 94-416 ppm-m ammonia 70 8030 

21 2 175-176 390-403 ppm-m ammonia 75 8462 

22 2 191-202 7-280 ppm-m ammonia 90 16410 

23 2 - Sky backgrounds above heated 
stack; some methanol and ammonia 

180 9559 

24 2 195-204 308-1381 ppm-m methanol 219 5781 

25 2 172-177 661-1386 ppm-m methanol 630 5370 

26 2 - Blackbody (ambient to 80 °C) 436 1684 

27 3 - Sky backgrounds above heated 
stack; some ammonia and sulfur 
hexafluoride 

705 16139 

28 3 174-205 475-1039 ppm-m ammonia 683 8317 

29 3 - Sky backgrounds above heated 
stack; horizon and tree backgrounds 

262 14438 

30 •^ 
j - Blackbody (ambient to 80 °C) 50 3260 

31 4 - Sky, terrain, and horizon 
backgrounds 

93 4510 

32 4 - Blackbody (ambient to 70 °C) 280 2420 

33 4 191-208 7-67 ppm-m ammonia 427 11573 

34 2 1 - Sky backgrounds above heated stack 398 2601 

35 2 1 202-206 456-1519 ppm-m ammonia 953 6944 

36 2 1 173-175 898-1258 ppm-m ammonia 253 3001 

37 2 •^ 
j 301-306 692-991 ppm-m ammonia 404 4175 

38 2 4 301-305 852-1036 ppm-m ammonia 992 4600 

"Indicates the first or second open-air experiment. 

14 
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Figure 1.        Library Vapor-Phase Absorbance Spectra of (A) Ethanol, 
(B) Ammonia, and (C) Acetone 
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3.2       Overview of Data Analysis Methodology. 

The data analysis methods are based on the isolation of the vapor analyte signature 
directly from the sampled interferogram data. Interferograms are preprocessed by a two-step 
procedure. First, a four-term high-pass filter is applied to remove low-frequency noise. Second, 
the filtered interferogram is normalized in the vector sense to unit length. Frequency selectivity 
for the target vapor analyte is achieved by applying one or more bandpass digital filters to the 
preprocessed interferogram for extracting the modulated frequencies corresponding to a spectral 
band of either an analyte or interference spectral feature. Further selectivity using band width is 
accomplished by selecting the proper interferogram segment that is displaced from the 
interferogram ZPD. The frequency position and width of the filter bandpass, as well as the 
starting and ending points of the interferogram segment, represent the optimization variables. 

The digital filtering methodology focuses on time-varying finite impulse response (FIR) 
filters. The filter coefficients are derived from interferogram data by use of a multiple linear 
regression procedure.20 Table 4 lists the specifications for the filters that are used with data set 
A. The table includes the position of the filter passband, the width-at-half-maximum of the 
passband, and the average attenuation (in dB) in the filter stopbands. Three ethanol and nine 
ammonia filter specifications are considered in this investigation. 

The use of either one filter positioned on the ethanol C-0 band or a combination of two 
filters, one positioned on the ethanol band and one positioned to extract information about the 
ammonia interference are explored. When two filters are used, each filter is applied to a specific 
segment of the preprocessed interferogram. The two resulting filtered segments are concatenated 
for use in subsequent calculations. 

To automate the detection of ethanol, the filtered interferogram segments are supplied as 
the input vectors to piecewise linear discriminant analysis (PLDA).21,22 The PLDA is a 
numerical pattern recognition method that is based on the calculation of multiple linear 
boundaries (termed "discriminants") dividing the input data space into regions corresponding to 
user-defined categories. The boundary is a hyperplane and is mathematically defined by its 
normal vector. Positioning this vector in this study is accomplished by a simplex optimization 
procedure, although other numerical optimization methods are possible.23 A training set of 
example patterns is used to locate the discriminants. Unknown patterns are subsequently 
classified by their position with respect to the computed training set boundary (i.e., on which side 
of the boundary they lie). A calculated discriminant score indicates the distance of a pattern 
from the boundary, with positive scores indicating a location on the analyte-active side of the 
boundary. 

In the present application, two data categories exist, corresponding to the presence or 
absence of the target analyte ethanol. The PLDA method assumes that the input vectors with 
characteristic signatures cluster in the data space in a way relating to their particular category. 
For the passive remote sensing application, this requires the ethanol signature to be evident in the 
filtered interferogram, regardless of presence or absence of ammonia or acetone spectral 
interferences. 
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Table 4. Digital Filter Parameters for Data Set A 

Filter Position3 (cm"1) Widthb (cm"1) Attenuation0 (dB) 

Ethanol Filters 

1 1068 120 28.4 

2 1068 135 27.5 

3 1068 147 26.6 

Ammonia Filters 

4 930 104 28.1 

5 930 116 28.1 

6 930 135 26.9 

7 957 108 28.5 

8 957 120 28.3 

9 957 143 27.2 

10 945 104 28.0 

11 945 120 28.0 

12 937 139 27.1 

aLocation of minimum attenutation in the filter passband. 

Width at half-maximum of the filter passband. 

cAverage attenuation in the stopband computed over the range of 400 to 700 cm'1. 
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Multiple discriminants provide an approximation to a nonlinear boundary between data 
categories. In the present implementation of PLDA, this is accomplished by computing the 
individual discriminants in a stepwise manner. Each discriminant is optimized to separate as 
many analyte-active training patterns as possible, by defining a "pure" side of the boundary that 
contains only patterns in the analyte-active class. Once separated, these analyte-active patterns 
are removed from further consideration. The next discriminant is computed from the remaining 
"mixed-class" group of patterns. This process continues until one of two conditions exist. 
Condition one is that all analyte-active patterns have been separated. Condition two is that the 
remaining patterns in the mixed-class group are indistinguishable (i.e., further separation of 
analyte-active patterns is not possible). In the current effort, complete separation is achieved in 
several cases with data set B, but is never achieved with data set A. For the cases in which 
complete separation is not achieved, individual discriminants are computed until no additional 
patterns in the training set are separated or until a maximum of five discriminants is reached. 

Table 5. Partitioning of Data Sets A and B 

Data category Training set Prediction set3 

Data set A 
Analyte-active 4800 3200 

Analyte-inactive 8300 18400 
Data set B 

Analyte-active 8000 49902 
Analyte-inactive 8000 160108 

Prediction set I for data set B is described. 

3.3       Analysis of Data Set A. 

The collected interferograms were subdivided into training and prediction sets for 
optimizing and testing the digital filtering/pattern recognition methodology. As discussed 
previously and indicated in Table 1,12 individual laboratory data runs were employed based on 
nine sample compositions. Each data run included 20 groups of 150 interferograms 
corresponding to 20 temperature settings of the background extended blackbody source. Within 
each group, 50 interferograms each were acquired for three conditions of (1) the vapor filled cell, 
(2) blank empty cell, and (3) no cell intervening between sensor/blackbody. Different 
procedures were used for assigning interferograms to the training and prediction sets in the 
ethanol-active and ethanol-inactive data categories. 

For the ethanol-active category, a sample in a data run was defined as the combination of 
an ambient vapor composition and blackbody background temperature. Samples were assigned 
in an alternating manner to the training and prediction sets. For the first 18 blackbody 
background temperature settings in each run, the training set contained blackbody temperatures 
of 50, 40, 35, 29, 27, 25, 24, 23, 21, 10, and 5 °C, where as the prediction set contained 
blackbody temperatures of 45, 30, 28, 26, 22, 20, and 15 °C. As noted previously, the 19th and 
20th temperature settings varied from run to run and were assigned to the prediction and training 
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sets, respectively. In each case, the 50 replicate interferograms corresponding to a sample were 
carried together into either the training or prediction set. 

The ethanol-inactive category contained three types of interferogram scans: (1) blank 
empty cell, (2) blackbody without the intervening cell present, and (3) cell containing 
combinations of acetone/ammonia interference vapor mixtures. Interferogram scans of the 
empty cell and blackbody backgrounds only at all temperatures were assigned to the training and 
prediction sets using the subset selection algorithm developed by Carpenter and Small.24 For 
interferogram scans of the filled vapor cell containing acetone, ammonia, and acetone/ammonia 
mixtures, interferograms were assigned to the training and prediction sets by use of the same 
alternating blackbody temperature procedure described previously for the ethanol-active 
category. Also as before, the 50 replicate interferograms in each experimental condition were 
grouped into the training or prediction sets. The resultant number of interferograms that are 
assigned to either the training or prediction sets for each data category are given in Table 4. 

An optimization procedure was used to identify the optimal digital filtering and 
interferogram segment parameters for use with the PLDA algorithm. Three general strategies 
were employed in implementing the ethanol detection: (1) use of a single ethanol filter and a 60- 
point segment of the interferogram, (2) use of a single ethanol filter and a 120-point 
interferogram segment, and (3) use of one ethanol and one ammonia filter applied to individually 
optimized 60-point interferogram segments, with the resulting filtered points concatenated to 
form a 120-point segment. Selection of 120 points as the maximum segment length was based 
on a previous study.10 

With each of the three strategies described above, a grid search optimization was 
performed to determine the optimal filter(s) and corresponding interferogram segment 
location(s). The three ethanol filters listed in Table 4 were first evaluated in conjunction with 60 
and 120-point interferogram segments. With each filter, the segment starting position was varied 
from points 25 to 175 for increments of 25 points. The ZPD point was defined as point 1. For 
each combination of filter and segment, PLDA was applied to the training set. Each computed 
piecewise linear discriminant consisted of 3 to 5 individual discriminants. In each case, the 
discriminant optimization was terminated when no additional ethanol patterns were reliably 
separated. The resulting discriminants were ranked on the basis of the total number of training 
patterns correctly classified. For each of the three filters, the interferogram segment that 
produced the optimal results was selected, and the corresponding discriminant was used to 
classify the patterns in the prediction set. 

Table 6 lists the classification performance of each discriminant when applied to the 
training and prediction sets. Training results are listed for only ethanol detections because the 
PLDA algorithm discriminants separate ethanol-active patterns from the current mixed subset of 
ethanol-active and ethanol-inactive patterns. Thus, ethanol-inactive patterns in the training set 
are never misclassified. For the prediction set, correct ethanol detections are tabulated along 
with false detections (i.e., false positives). The total number of correct classifications in the 
prediction set is also listed. 

The two-filter approach was implemented by finding the best ammonia filter and 
corresponding interferogram segment, then adding it to each of the optimal ethanol filter/60- 
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Table 6. Pattern Recognition Results for Laboratory Data Set A 

Filter(s) used3 Segmentb Correct 
ethanol 

detections 
(training) 

Correct 
ethanol 

detections 
(prediction) 

False 
ethanol 

detections 
(prediction) 

Total correct 
classifications 
(prediction) 

Ethanol filter and 60-point segment 

1 51-110 3528 
(73.5%) 

2421 
(75.7 %) 

74 
(0.4 %) 

20747 
(96.1 %) 

2 51-110 3514 
(73.2 %) 

2214 
(69.2 %) 

69 
(0.4 %) 

20545 
(95.1 %) 

3 51-110 3490 
(72.7 %) 

2204 
(68.9 %) 

28 
(0.2 %) 

20576 
(95.3%) 

Ethanol filter and 120-point segment 

1 26-145 3817 
(79.5%) 

2481 
(77.5%) 

40 
(0.2%) 

20841 
(96.5%) 

2 51-170 3766 
(78.5%) 

2507 
(78.3%) 

109 
(0.6%) 

20798 
(96.3%) 

26-145 3690 
(76.9%) 

2478 
(77.4%) 

119 
(0.7%) 

20759 
(96.1%) 

Ethanol and ammonia filters with total segment of 120 points 

2 
10 

51-110 
26-85 

4074 
(84.9%) 

2819 
(88.1%) 

87 
(0.5%) 

21132 
(97.8%) 

3 
12 

51-110 
26-85 

4046 
(84.3%) 

2656 
(83.0%) 

95 
(0.5%) 

20961 
(97.0%) 

1 
8 

51-110 
51-110 

3982 
(83.0%) 

2695 
(84.2%) 

29 
(0.1%) 

21066 
(97.5%) 

aRefers to filter numbers in Table III. 

be Starting and ending interferogram points where point of ZPD = 1. 
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point segment combinations listed in Table 6. For each of the ammonia filters listed in Table 4, a 
grid search was performed to identify the best 60-point segment to use with each ethanol 
filter/segment. Starting points for the ammonia segments were investigated over the range of 
points 25 to 150 in steps of 25 interferogram points. As noted previously, the ethanol and 
ammonia filters were applied separately to the same preprocessed interferogram data, and the 
resulting filtered segments were concatenated. For each 120-point concatenated segment, 
piecewise linear discriminants were computed as described previously by use of the training set. 
The best combinations were selected on the basis of the number of training patterns correctly 
classified. The corresponding discriminants were then applied to the prediction set. Training 
and prediction results are given in Table 6 for the best ammonia filter/segment combinations that 
were found for use with the previously optimized ethanol filter/segment combinations. The 
corresponding piecewise linear discriminants contained either 4 or 5 individual discriminants. 
Inspection of Table 6 reveals that the results among the three detection strategies differ primarily 
in their ability to make positive ethanol detections. False detections are 0.7% or less in all cases. 
Focusing on correct ethanol detections in the prediction set, the general trend in the results is 
greater ethanol detection sensitivity (i.e., higher ethanol classification percentages) for the two- 
filter strategy versus either of the single-filter approaches. In the best cases in which a single 
filter was used, increasing the ethanol segment from 60 to 120 points improves the detection 
percentage from approximately 76 to 78%. Adopting the two-filter approach increases the 
ethanol detection percentage to 88%. 

A two-sample Mest was also used to establish a statistical basis for comparing the results 
in Table 6. The three classification results for the application of each method to the prediction 
set were used to define the samples for comparison. A one-tailed test was used for each 
comparison along with separate variance estimates. The ethanol detection percentages for the 
two-filter approach were found to be greater than those for the 60-point and 120-point single- 
filter methods at probabilities of 0.007 and 0.02, respectively. A similar comparison of the false 
detection percentages found no statistically significant improvement afforded by the two-filter 
approach. 

Further understanding of the prediction results requires knowledge of the signal strengths 
in the spectral data. The differential temperature between the gas cell contents and blackbody 
source impacts these signal strengths, as well as the vapor concentration and pathlength. The 
signal detected by a passive IR remote sensor at a speicific wavenumber is given by equation 1. 

P=[TaTlNb + (l-TaTl)Nl]B (1) 

The P denotes the power of the light incident on the sensor; Ta represents the transmittance of the 
intervening atmosphere between the IR background and the sensor; T, indicates the transmittance 
of the target vapor sample in the FOV of the sensor; Nb signifies the spectral radiance of the 
background; N, denotes the radiance of a blackbody at the same temperature as the vapor sample; 
and B is a parameter related to the optical collection efficiency of the sensor.    For a 
concentration range over which the Beer-Lambert law holds, Tt in equation 1 is expressed as e 

, where the summation contains a contribution from each chemical constituent of the vapor 
sample. For each species, a denotes the absorptivity, c represents the concentration, and / 
signifies the optical pathlength of the target vapor sample. The TaT,Nb term describes the 
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absorption of background IR energy by the vapor sample constituents, whereas the (1 - TaTt)Nt 

term describes the self emission of IR energy from these vapor species. 

An inspection of equation 1 reveals that the net signal arising from the chemical 
constituents of the vapor sample depends on the difference between Nb and Nt. For example, if 
N, = Nt, then equation 1 reduces to P = NtB. This illustrates the situation in which absorption 
and emission occur at the same rate. Thus, this condition results in no detectable spectral signals 
from the target vapor sample. This shows the inherent limitation of the passive remote sensing 
measurements, which depend on the existence of a sufficient radiance differential between the 
vapor sample and background scene. The radiance levels, as described by the Planck function, 
are determined by the temperature of the extended blackbody source. In practice, passive IR 
detection of a vapor target analyte relies on three factors: (1) a sufficiently large product of acl 
for the vapor analyte, (2) a sufficiently small YACI for the other chemical species present, and 
(3) a sufficiently large temperature differential between the vapor sample and the background. 

On the basis of the preceeding theoretical treatment, the signal strengths of the passive 
data are evaluated by visual inspection of the spectra computed from the collected interferogram 
data as a function of the temperature differential between the vapor cell contents and blackbody 
source. Because the Fourier transform is a linear operation, the signal strengths present in the 
interferogram domain are then be assumed to be analogous. 

To evaluate the signal strengths of the prediction data, spectral signal-to-noise (S/N) 
ratios were computed as a function of the temperature differentials. Single-solute component 
runs of ethanol, ammonia, and acetone at the same aqueous dilution factors present in the 
prediction set were used in these comparisons. Transmittance spectra were calculated by ratioing 
single-beam spectra of the vapor containing cell to the corresponding single-beam spectra of the 
blank empty cell. The resultant transmittance spectra were converted into spectral absorbance 
units. The single-beam spectra were obtained by Fourier transforming the associated 
interferograms with triangular apodization and Mertz phase correction. 

To calculate root-mean-square (RMS) noise values in the regions of the spectral bands, 
difference spectra were obtained by subtracting absorbance spectra computed from consecutive 
single scans. The noise in a difference spectrum, Sd, was determined by a least-squares fitting 
over a 100 cm"1 spectral region to a linear baseline and subsequently computing the RMS noise 
about this fitted line. By the principles of error propagation, the noise in the original absorbance 
spectra, sa, was found with equations 2 and 3. 

sa.sd/2
1/2 (2) 

Sd = [si2 + s2
2]1/2.21/2sa (3) 

The noise levels were represented by Si and S2 in the first and second replicate absorbance 
spectra, respectively. Each of these levels are assumed to be equal to sa- The spectral 
wavenumber ranges for computing the noise levels of the ethanol, ammonia, and acetone 
absorbance data were 1000-1100, 900-1000, and 1165-1265 cm"1, respectively. These spectral 
peak regions contained the principal spectral bands that influenced the ethanol determination. 

23 



CO 
a: 

CD 
w 
'o 
■z 

CO 
C 
D) 

CO 

X5 
a> 
a. 

CO 

75 - 

60 

45 

30 

15 

0 - 

500 - 
ro 
tr 
g> 400 

0 300 
i 

CO 

1 200 
CO 

I 100 
Q. 

CO 

-20       -15       -10 -5 0 5 10 15 
Temperature Difference (°C) 

20 25 30 

Figure 3.        Spectral Signal-to-Noise Ratios (S/N) as a Function of the Differential 
Temperature for (A) Three Ethanol Dilution Factors, Estimated CL 
Values; (B) Two Ammonia Dilution Factors, Estimated CL Values; 
and (C) One Acetone Dilution Factor, Estimated CL Value 
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Calculation of the S/N values was based on determining the maximum absorbance value at the 
spectral peak regions noted previously, averaged across each pair of replicate absorbance spectra 
considered. The resulting peak absorbance was ratioed to the estimated noise level to obtain the 
S/N value. A complicating factor at low signal levels was the presence of interference fringes in 
the spectra arising from the thin polyethylene gas cell windows. These fringes were suppressed 
by use of a digital Fourier filter prior to the calculation of the peak maximum. Following the 
filtering step, a second order polynomial baseline was computed by use of the two 50 cm" 
regions on each side of the spectral peak regions. The baseline contribution was subtracted from 
the peak maximum by use of this model before the S/N value was computed. 
At each blackbody temperature, eight pairs of replicate absorbance spectra are determined, and 
the average S/N values are computed by relying on the computational methodology previously 
described. For each solution sample composition (i.e., dilution factor) that occurs in the 
prediction set, Figure 3 plots the computed spectral S/N values as a function of the temperature 
differential between the blackbody and cell contents. Positive temperature differences 
correspond to the case in which the blackbody is at a higher temperature than the gas cell 
contents (i.e., the vapor analyte spectral features are present as absorption bands). Negative 
temperature differences represent the case in which the blackbody is at a lower temperature than 
the gas cell contents (i.e., the vapor analyte spectral features are present as emission bands). 
However, the values in Figure 3 are plotted in absorbance units, which by definition are always 
positive. Plots of the absorbance values are provided for the target analytes of (A) ethanol, (B) 
ammonia, and (C) acetone in Figure 3. The error bars are plotted for each temperature at the 95% 
confidence interval about the mean of the eight computed S/N values. The three ethanol dilution 
factors and estimated path-averaged concentrations are represented in Figure 3 A by open 
triangles for 1/16, 521-540 ppm-m; solid circles for 1/32, 294-296 ppm-m; and open boxes for 
1/64, 145-162 ppm-m. The two ammonia dilution factors and estimated path-averaged 
conentrations are denoted in Figure 3B by solid circles for 1/16, 468-479 ppm-m and open 
triangles for 1/32, 194-204 ppm-m. The one acetone dilution factor and estimated path-averaged 
concentration are shown in Figure 3C by solid circles for 1/16, 3314-3402 ppm-m. The 
horizontal dashed line in each plot of Figure 3 is drawn at S/N = 10.0, which corresponds to the 
conventional definition of the limit of quantitation (LOQ).2   The signal level corresponding to 
the LOQ is often taken as the smallest useable signal for the purpose of implementing an 
analytical determination. 

As described by equation 1, the general trend in the plots of Figure 3 is a decrease in S/N 
as the temperature differential approaches zero. An increase in concentration causes the S/N 
values to shift in a positive direction, but similar behavior with respect to temperature is 
observed for each concentration. Comparison of the data across the three compounds reveals 
that the ammonia and acetone S/N values greatly exceed those of ethanol. It is important to note 
that the ethanol S/N values in much of the prediction data lie below the LOQ cutoff. 

This assessment of the relative signal strengths of ethanol, ammonia, and acetone vapor 
components provides some context for the relatively low ethanol detection percentages of 76 to 
88% reported previously in Table 6. Further insight into these results is obtained by an 
inspection of Table 7. For each of the eight data runs in the prediction set, classification 
percentages for the ethanol-active interferograms are presented as a function of the absolute 
temperature differential between the blackbody and sample cell contents. Absorption and 
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Table 7. Ethanol Prediction Results as a Function of Differential 
Radiance Temperature for Data Set A 

Run' 
Temperature Differential (°C) 

0-1 1-2 2-3 3-4 4-5 >5 

1 0" 0 10 90 2 100 
0C 42 27 96 2 100 
0d 64 53 80 98 80 

4 0 0 1 0 30 96 
0 0 1 10 39 94.7 
0 0 3 94 92 100 

5 6 100 100 100 100 100 
3 100 100 100 100 100 
32 100 100 100 100 100 

6 0 62 100 100 100 100 
0 100 100 100 100 100 
0 100 100 100 100 100 

7 26 0 72 100 100 100 
48 0 4 100 100 100 
58 0 82 100 100 100 

8 0 60 100 100 100 100 
0 20 100 100 100 100 
0 96 100 100 100 100 

9 2 0 68 100 100 100 
0 0 100 100 100 100 
84 0 100 100 100 100 

10 8 0 98 72 100 100 
30 
82 

0 
0 

88 
100 

100 
100 

100 
100 

IflD 
100 

"Run number from Table I. 

bEtlianol detection percentage based on single ethanol filter and 60-point interferogram segment. 

cEthanol detection percentage based on single ethanol filter and 120-point interferogram segment. 

''Ethanol detection percentage based on ethanol and ammonia filters and total interferogram segment length of 120 points. 
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emission data are not differentiated in this presentation. The top, middle, and bottom entries, 
respectively, in each box of the table correspond to the ethanol detection percentage for the cases 
of a single ethanol filter and 60-point segment; a single ethanol filter and 120-point segment; and 
ethanol and ammonia filters with a 120-point total segment length. Run numbers refer to the 
sample composition data in Table 1. 

The classification results presented in Table 7 clearly illustrate that the two-filter strategy 
provides results superior to those produced by either of the single-filter strategies when the 
detection becomes difficult. In Table 7, detections are made for 16 of the 24 cases with a < 3 °C 
temperature differential. The two-filter strategy produces the best result in 10 of these cases, and 
ties for the best result in the other 6 cases. As is expected, the greatest improvement occurs in 
runs 7-10, where the interfering ammonia species is at its highest concentration of approximately 
450 ppm-m. 

When the temperature difference was > 3 °C, detections were made in every case. The 
two-filter strategy achieved or tied the best result in 22 of the 24 cases, although each method 
was observed to work equally well. The effect of the ethanol S/N values in Figure 3 is clearly 
evident, as the classification results were observed to improve greatly when the temperature 
difference was at least 3 °C. 

3.4      Analysis of Data Set B. 

Data set B was used to confirm the applicability of the two-filter strategy for field remote 
sensing data of stack emissions. The data described in Table 2 were assembled into a training set 
and two prediction sets (I and II). The 6000 interferograms comprising Run 9 in Table 2 were 
first set aside to form prediction set II. This data run consisted of a series of ethanol/ammonia 
mixtures in which the ethanol concentration was decreased incrementally from 405 to 0 ppm-m 
in the presence of an ammonia concentration that remained approximately constant within the 
range of 170-183 ppm-m. The 6000 interferograms represent a set of data collected contiguously 
in time as the releases were performed. 

The training set and prediction set I were then assembled from the remaining 37 runs 
described in Tables 2 and 3. To allow an accurate assessment of the training and prediction 
performance obtained with the data, it was necessary to assign each interferogram with 
confidence to either the ethanol-active or ethanol-inactive data categories. Separate procedures 
were used for each category. 

The ethanol-inactive data were assembled from runs in which ammonia, sulfur 
hexafluoride, or methanol were released. Ethanol-inactive data also included blackbody 
reference measurements and runs measuring various sky, terrain, and horizon backgrounds in the 
absence of target vapors. In terms of spectral features that could have bearing on the ethanol 
detection, sulfur hexafluoride possessed a narrow band with center of mass at 942 cm"1, whereas 
methanol has a band with PQR band shape and center of mass at 1034 cm"1 (peak maximum of 
the Q branch near 1033 cm"1). 
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The subset selection procedure of Carpenter and Small 4 was used to select 8000 of these 
ethanol-inactive interferograms for use in the training set. The remaining 160108 interferograms 
were placed in prediction set I. In an attempt to account for changes in the IR background 
radiance from day to day and over the intervening approximately four months between the open- 
air experiments, the selection of these 8000 training interferograms was partitioned into six 
groups. For the first open-air experiment, the data were subdivided according to the day of 
collection. For days one to four, 800, 1700, 1700, and 800 interferograms were selected, 
respectively, for inclusion in the training set. For the second open-air experiment, the ethanol- 
inactive data consisted only of ammonia releases and various backgrounds acquired when no 
sample vapors were being released. In this case, the data were subdivided according to these two 
groups, with 1000 background and 2000 ammonia interferograms being selected for the training 
set. 

Selection of the data in the ethanol-active category was complicated by the nature of data 
collected in an open-air experiment. In this environment, there was no guarantee that the vapor 
analyte was within the FOV of the spectrometer, even if it was known that a analyte vapor 
release was being made. For this reason, the ethanol-active data were visually inspected for the 
presence of the ethanol signature. This was accomplished in four steps. First, a single-beam 
spectrum was computed from each interferogram collected during the ethanol releases. Second, 
this computed spectrum was normalized to unit area. Third, a similarly processed background 
spectrum collected before the start of the release was subtracted from the ethanol containing 
spectrum. Fourth, the resulting difference spectrum was inspected for the presence of the ethanol 
signature. The Fourier processing step included triangular apodization and Mertz phase 
correction. This inspection procedure yielded a pool of ethanol-active interferograms for 
inclusion in the training set and prediction set I. The subset selection procedure of Carpenter and 
Small24 was again used to select 8000 of these ethanol-active interferograms for use in the 
training set. The remaining 49902 interferograms were placed in prediction set I. The subset 
selection was performed in two groups. For the first and second open-air experiments, 
respectively, 5000 and 3000 interferograms were selected for inclusion in the training set. A 
summary of the number of interferograms is furnished in Table 5 for the training set and 
prediction set I corresponding to the various data subsets. In the rightmost columns of Tables 2 
and 3 are listed the number of interferograms that were assigned to the data subsets for each of 
the 38 experimental runs. 

The nine digital filtering/interferogram segment optimized combinations from data set A 
and listed in Table 6 were applied to data set B. Filters were recomputed with interferogram data 
from the Brunswick instrument to match the parameters in Table 4. Piecewise linear 
discriminants were computed with the training set of data set B, and the resulting discriminants 
were applied to prediction set I. The corresponding training and prediction results are listed in 
Table 8 in a manner analogous to those presented previously in Table 6. 

Inspection of Table 8 reveals excellent results with each of the three data analysis 
approaches in terms of training results and overall classification results with prediction set I. 
The two-filter strategy yields the greatest number of correct predictions, although the results are 
only slightly better than those obtained with the single ethanol filter on a 120-point interferogram 
segment. The results obtained with the single filter on a 60-point interferogram segment are 
slightly worse overall, particularly in the area of false detections. 

28 



Table 8. Pattern Recognition Results for Open-Air Data Set B 

Filter(s) useda Segment13 Correct 
ethanol 

detections 
(training) 

Correct 
ethanol 

detections 
(Pred. I) 

False ethanol 
detections 
(Pred. I) 

Total correct 
classifications 

(Pred. I) 

Ethanol filter and 60-point segment 

lc 51-110 7978 
(99.7%) 

49434 
(99.1%) 

4177 
(2.6%) 

205365 
(97.9%) 

2 51-110 7963 
(99.5%) 

49213 
(98.6%) 

1088 
(0.7%) 

208233 
(99.2%) 

3 51-110 7967 
(99.6%) 

49372 
(98.9%) 

2744 
(1.7%) 

206736 
(98.5%) 

Ethanol filter and 120-point segment 

1 26-145 8000 
(100%) 

49736 
(99.7%) 

1180 
(0.7%) 

208664 
(99.4%) 

2 .51-170 7997 
(99.96%) 

49667 
(99.5%) 

879 
(0.5%) 

208896 
(99.5%) 

->c 26-145 8000 
(100%) 

49784 
(99.8%) 

919 
(0.6%) 

208973 
(99.5%) 

Ethanol and ammonia filters with total segment of 120 points 

2 
10 

51-110 
26-85 

7987 
(99.8%) 

49591 
(99.4%) 

679 
(0.4%) 

209020 
(99.5%) 

3c 

12 
51-110 
26-85 

8000 
(100%) 

49851 
(99.9%) 

599 
(0.4%) 

209360 
(99.7%) 

1 
8 

51-110 
51-110 

7967 
(99.6%) 

49313 
(98.8%) 

417 
(0.3%) 

209004 
(99.5%) 

aRefers to specifications of corresponding filter numbers in Table III. 

bStarting and ending interferogram points where point of ZPD = 1. 

cDiscriminant applied to Prediction Set II. 
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Figure 4.        Ethanol Detection Percentage for Three Discriminants as a Function of 
Estimated Path-Averaged Ethanol Concentration for Prediction Set II 

Statistical comparisons of the classification results for prediction set I were performed as 
described previously with data set A. The ethanol detection percentage for the two-filter analysis 
was not significantly greater than that achieved by the other two methods. However, the false 
detection rates were significantly lower at probabilities of 0.07 and 0.02 when compared to the 
results obtained with the 60-point and 120-point single-filter methods, respectively. 

The discriminant that produced the best training results with each filtering method was 
next applied to prediction set II. These discriminants are indicated by a footnote in Table 8. For 
the single filter and 120-point segment, two discriminants tied for the best training result. In this 
case, the discriminant that produced the best total classification result with prediction set I was 
selected for application to prediction set II. 

For each of the three selected discriminants, Figure 4 plots the ethanol detection 
percentage as a function of estimated path-averaged concentration. The ethanol/ammonia filter 
with 120-point segment detection results are displayed as open circles in Figure 4. The single 
ethanol filter with 120-point segment detection percentages are shown in Figure 4 as open boxes. 
The single ethanol filter with 60-point segment is illustrated with open triangles in Figure 4. To 
generate this plot, the times at which the ethanol flow rate changes are mapped onto the 
corresponding data acquisition times for the interferograms. For the nine estimated ethanol path- 
averaged concentration levels of 0, 25, 82, 128, 183, 231, 287, 355, and 405 ppm-m, the 
corresponding numbers of interferograms are 1499, 690, 601, 687, 442, 576, 607, 847, and 51, 
respectively. For each of these groups, the number of interferograms producing discriminant 
scores > 0 (i.e., indicating an ethanol detection) is tabulated and the corresponding detection 
percentage is computed. 
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Inspection of Figure 4 reveals that each of the discriminants achieves a detection rate 
close to 100% at concentrations above 200 ppm-m. However, the results differ at that point. 
Below 200 ppm-m, the two-filter discriminant produces the greatest detection sensitivity, 
followed by the single-filter discriminants based on 120 and 60 points, respectively. Improved 
detection sensitivity is observed in the Figure 4 as a slower decrease in ethanol detection 
percentage with decreasing concentration. All of the discriminants produce a detection 
percentage of zero when the ethanol concentration is zero. The time trace of the two-filter 
discriminant response is illustrated as a solid line in Figure 5 with the ordinate scale on the left of 
the graph. Figure 5 plots the discriminant scores for prediction set II as a function of 
interferogram sequence number for the course of the experimental run. The two-filter 
discriminant is also used to produce the results in Figure 4. As noted previously, positive 
discriminant scores indicate an ethanol detection. Overlaid as dotted lines on the Figure 5 plot 
are the estimated ethanol and ammonia path-averaged concentration levels with the assoicated 
ordinate scale on the right side of the graph. It is clear from an inspection of this plot that the 
ethanol detection becomes more challenging as the ethanol concentration drops below that of 
ammonia. 

4. CONCLUSIONS 

The results presented in this study clearly show the benefits of employing multiple digital 
filters in interferogram analysis. The benefits occur in situations for which a vapor analyte 
signature becomes increasingly overwhelmed by the overlapping signals arising from spectral 
interferences. In examination of laboratory and open-air data, the combined ethanol and 
ammonia filter exhibits an improvement in detection sensitivity relative to either of the 
approaches based on a single filter. This investigation also illustrates that optimization of digital 
filtering and interferogram segment parameters with laboratory data can successfully be applied 
to data collected in the open-air scenarios. 

The strategy used in this study to evaluate the three filtering approaches was limited, 
because a full-scale optimization was not performed on the segment lengths used with each filter. 
Therefore, to equalize the impact of dimensionality on the pattern recognition results, a fixed 
segment length of 120 points was used as based on the results of a previous study. This dictated 
that the individual segments in the two-filter approach had to be less than 120 points. In this 
case, equal segments of 60 points were used. A parallel set of pattern recognition results based 
on a single filter and a 60-point segment were compiled for a direct comparison with the two- 
filter approach. Classification results obtained with both laboratory and open-air data indicated 
that with a single ethanol filter, the 120-point segment offered greater detection sensitivity than 
the 60-point segment. This was rationalized simply due to a longer integration of the ethanol 
signal. However, this also suggested that the optimal implementation of the two-filter approach 
could require a total segment longer than 120 points. Such an implementation would demand a 
more elaborate optimization strategy than the one currently employed. A formal numerical 
optimization strategy to address this issue will be the focus of future research efforts. 
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Figure 5.       Discriminant Scores for Prediction Set II for Ethanol/Ammonia Filters 
with a Total Segment Length of 120 Points 
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